12 Diagnostic plots

To demonstrate how LTA results can explored quickly and reviewed for QA/QC using diagnostic plots, we will use a built-in LTabundR dataset, which has density/abundance estimates for the Hawaiian EEZ in 2010 and 2017 for striped dolphins, Fraser’s dolphins, and melon-headed whales, ran with only 100 iterations:

data(lta_result)

We created these LTA results using the following built-in processed dataset:

data(cnp_150km_1986_2020)

The function lta_diagnostics() can be used to review the object returned by the LTabundR function lta(), which is the primary function in this package for line-transect analysis. The typical way to use this function is simply:

lta_diagnostics(lta_result)

When you run this, the function will step through many diagnostic outputs (there are currently 8), some of which are tables and some of which are plots. Between each output, the function will wait for the user to press <Enter>. To turn that waiting feature off, you can add the input wait = FALSE.

To see which outputs are currently available from this function, use the following code:

lta_diagnostics(lta_result, 
                options = c(),
                describe_options = TRUE)

List of options for outputs to provide: ===============
(use numbers in the input `options`)

1 - Point estimate (encounter rate, density, abundance, g(0), etc.)
2 - Summary of bootstrap iterations, including CV of density/abundance
3 - Plot of detection function
4 - Histogram of bootstrapped detection counts
5 - Histogram of bootstrapped g(0) values
6 - Histogram of bootstrapped abundance estimates
7 - Scatterplot of abundance ~ g(0) relationship in boostraps
8 - Time series of point estimate CV as bootstraps accumulate

======================================================

To call specific outputs and not others, use the options input. We demonstrate this be stepping through each output below.

Option 1: The point estimate

lta_diagnostics(lta_result, options = 1)
               title species   Region    Area year segments    km Area_covered
1    Striped dolphin     013 (HI_EEZ) 2474596 2010      124 17004        60472
2    Striped dolphin     013 (HI_EEZ) 2474596 2017      131 16281        58036
3   Fraser's dolphin     026 (HI_EEZ) 2474596 2010      124 17004        59198
4   Fraser's dolphin     026 (HI_EEZ) 2474596 2017      131 16281        47615
5 Melon-headed whale     031 (HI_EEZ) 2474596 2010      124 17004           NA
6 Melon-headed whale     031 (HI_EEZ) 2474596 2017      131 16281        54317
  ESW_mean  n g0_est ER_clusters D_clusters N_clusters size_mean size_sd     ER
1     3.56 19   0.33      0.0011     0.0005     1202.4      51.4    47.2 0.0574
2     3.56 17   0.32      0.0010     0.0005     1172.1      35.4    18.1 0.0369
3     3.48  3   0.33      0.0002     0.0001      190.9     236.2   129.0 0.0417
4     2.92  2   0.32      0.0001     0.0001      163.4     355.6    91.4 0.0437
5       NA  0   0.33      0.0000     0.0000        0.0        NA      NA 0.0000
6     3.34  3   0.32      0.0002     0.0001      214.3     189.2    68.4 0.0349
       D     N g0_small g0_large g0_cv_small g0_cv_large
1 0.0238 58784     0.33     0.33        0.20        0.20
2 0.0157 38912     0.32     0.32        0.21        0.21
3 0.0186 46047     0.33     0.33        0.20        0.20
4 0.0232 57289     0.32     0.32        0.21        0.21
5 0.0000     0     0.33     0.33        0.20        0.20
6 0.0161 39906     0.32     0.32        0.21        0.21

Option 2: Summary of bootstrap iterations

lta_diagnostics(lta_result, options = 2)
               title   Region year species iterations ESW_mean   g0_mean
1   Fraser's dolphin (HI_EEZ) 2010     026        100 3.583041 0.3416702
2   Fraser's dolphin (HI_EEZ) 2017     026        100 3.094781 0.3281904
3 Melon-headed whale (HI_EEZ) 2010     031        100      NaN 0.3231020
4 Melon-headed whale (HI_EEZ) 2017     031        100 3.239299 0.3168325
5    Striped dolphin (HI_EEZ) 2010     013        100 3.565911 0.3311607
6    Striped dolphin (HI_EEZ) 2017     013        100 3.580167 0.3159498
      g0_cv       km         ER          D      size    Nmean  Nmedian      Nsd
1 0.2221788 17055.42 0.04245259 0.02025920 231.01534 50133.33 44839.58 39680.14
2 0.2242684 16240.37 0.03999801 0.02057141 348.60057 50905.92 43858.56 39747.42
3 0.1836888 17055.42 0.00000000 0.00000000       NaN     0.00     0.00     0.00
4 0.2421172 16240.37 0.03601738 0.01983840 190.01994 49092.02 41762.63 32261.45
5 0.2099688 17055.42 0.05758173 0.02482534  52.52283 61432.68 57097.42 26481.48
6 0.2258010 16240.37 0.03592027 0.01641222  35.43593 40613.61 38207.79 16051.23
         CV      L95       U95
1 0.7914923 12533.33 200533.31
2 0.7808014 12726.48 203623.70
3       NaN      NaN       NaN
4 0.6571629 16364.01 147276.07
5 0.4310651 30716.34 122865.35
6 0.3952181 20306.80  81227.22

Option 3: Plot of detection function

lta_diagnostics(lta_result, options = 3)

Option 4: Histogram of bootstrapped detection counts

lta_diagnostics(lta_result, options = 4)

Option 5: Histogram of bootstrapped g(0) values

lta_diagnostics(lta_result, options = 5)

Option 6: Histogram of bootstrapped abundance estimates

lta_diagnostics(lta_result, options = 6)

Option 7: Relationship between bootstrap g(0) and abudance

lta_diagnostics(lta_result, options = 7)

Option 8: Running calculation of CV during bootstrap process

lta_diagnostics(lta_result, options = 8)